

Data Drought:

An Assessment of Global Hydrological Monitoring Systems

Convened by: Duke University / The Aspen Institute / University of Oxford / Xylem

Xylem: At a Glance

WE ARE AN INDUSTRY LEADER WITH GLOBAL REACH ...

- Leading global water technology provider
- Unrivaled product portfolio with leading brands
 and solutions
- Approximately 16,000 global employees
- 300+ global locations; doing business in 150+ countries
- \$4.5 billion* in annual revenues
- Provide solutions across the entire water cycle

...UNIQUELY POSITIONED TO SOLVE OUR CUSTOMERS' CHALLENGES

Data Drought: Agenda

I. Overview of the Data Drought Challenge

Albert Cho Vice President, Strategy & Business Development, Xylem

II. Water Data System Gaps Analysis

Alex Fischer University of Oxford

III. Estimated Benefits from Investment in Water Data Systems

Martin Doyle Nicholas Institute for Environmental Policy Solutions at Duke University and The Aspen Institute

IV. Panel Discussion

V. Q&A

will be melting rapidly

Scandinavia/UK/Northern Russia/Greenland Compact high-rise cities would provide shelter for much of the world's population

Siberia

Reliable precipitation and warmer temperatures provide ideal growing conditions for most of the world's subsistence crops

Canada Reliable precipitation and warmer temperatures provide ideal growing conditions for most of the world's subsistence crops

Arctic passage

transportation links beween habitable zones in Canada and Russia

With no sea ice, this valuable shipping route is open all year, providing

South-west US Descriftcation led to the last inhabitants of this region migrating north. The Colorado river is a mere trickle. The land is used for solar farming and geothermal energy

> Peru Deglaciation means this area is dry and uninhabitable

Western Antarctica Unrecognisable now. Densely populated with high-rise cities

North Africa/Middle East/ Southern US

Solar Energy Belt stretches for thousands of kilometres, employing a mixture of photovoltaic and solar thermal energy. At frequent intervals a high voltage direct-current substation sends power north

> Amazon Desert

Africa Mostly desert, though some models show greening of the Sahel

Patagonia Melted glaciers revealed a new arable zone, although the poor soils needed preparation

Asia

Most of the Himalayan glaciers have melted, with repercussions for many of the major rivers in the region. Bangladesh is largely abandoned, as is south India, Pakistan and Afghanistan. Isolated communities remain in pockets

Southern Europe Deserts have encroached on the continent, rivers have dried up and the Alps are snow-free. Goats and other

hardy animals are kept at the fringes.

Southern China

Dried rivers and aquifers mean this region has been abandoned. Intense monsoons have helped erode the land, leaving a dustbowl

> Polynesia vanished beneath the sea

Australia in the far north and Tasmania, compact cities house people and crops are grown. The rest of the continent is given to solar energy production and uranium mining for nuclear power

New Zealand Unrecognisable. This densely populated island state has high-rise cities and intensive farming

Source: Parag Khanna, New Scientist

A robust water data system supports vital decisions

	Water Supply				V	Water Demand			
	1	2	3	4	5	6	7	8	
Energy production									
Food production									
Flood protection									
Insurance									
Water storage planning									
Climate resilience									
Water quality for human health									
Water quality for ecosystem health									
Wastewater treatment									
Infrastructure design									

Legend:

Atmospheric, 2. Surface water, 3. Subterranean,
 Oceanic, 5. Agricultural, 6. Industrial,
 Domestic, 8. Environment

A robust water data system is vital to SDG 6

Targets for SDG 6		Water Supply			Water Demand			
	1	2	3	4	5	6	7	8
6.1: universal and equitable access to safe and affordable drinking water for all							•	
6.2: access to adequate and equitable sanitation and hygiene for all							•	
6.3: improve water quality globally				•				
6.4: substantially increase water-use efficiency across all sectors		•			•	•	•	
6.5: implement integrated water resources management at all levels		•	•	•	•	•	•	
6.6: protect and restore water-related ecosystems		•	•	•				
6.a: expand international cooperation and capacity building support		•	•	•	•	•	•	
6.b: strengthen local communities for improvin water and sanitation management	9		-					-

Legend:

- 1. Atmospheric, 2. Surface water, 3. Subterranean,
- 4. Oceanic, 5. Agricultural, 6. Industrial,
- 7. Domestic, 8. Environment

The Value of Water Information

Do we have the right public water data infrastructure to support resilience and adaptation to a changing world?

Change drivers Data needs Climate change Dense • Population growth and urbanization Discoverable • Accessible Economic growth ۰ • Aging infrastructure Reliable ٠

Global Water Information

Is the global network of rain, river and water quality in situ measurement stations sufficient for public data benchmarking? Scientists, industry experts, and policy makers repeatedly state that there is an **insufficient and declining** availability of water information.

The exact gaps, reported decline and minimum target density for in situ monitoring stations have not been clearly defined.

Global and standardized databases for rain/climate, streamflow and water quality provide an initial basis for estimating global station coverage.

How big is the gap?

- Reporting Gap:
 - The difference between the recommended stations defined by the 2008 WMO Guidelines and the number of stations being actively reported into the global databases.
- Measurement Gap:
 - The difference between the recommended station density defined by the 2008 WMO and the number of station estimated to be active through statistical models.

Benchmarks for Minimum Station Density

WMO's recommended minimum densities of hydrological stations						
Physiographic unit	Description	Precipitation (Area in km² per station)	Streamflow (Area in km² per station)			
Small islands	Island states or territories with area 500km ² or less.	250	300			
Coastal	Areas within 100km from the coastline.	9,000	2,750			
Arid / Polar	Areas classified as 'Dry system' or 'Polar system' by the Köppen-Geiger climate classification system	100,000	20,000			
Mountainous	Areas with elevation of 1,500m or greater.	2,500	1,000			
Interior plains	Areas with elevation of 200m or less.	5,750	1,875			
Hilly / Undulating	Total area not classified as Coastal, Mountainous, or Interior plains.	5,750	1,875			
Source: WMO 2008.						

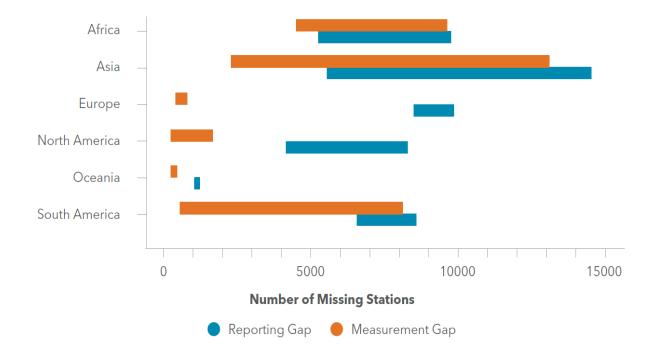
Population, Landscape and Climate Estimates, v3: Elevation Zones, Global National Aggregates of Geospatial Data Collection PLACE III Digital elevation data were obtained as a 1 kilometer resolution elevation\bathymetry raster product from ISciences, L.L.C.. Elevation zones were created by aggregating Meters above sea level: ranges of land elevation values into 12 thematic elevation classes, as described below. ISciences' TerraVival product combines NASA's Shuttle Radar Topographic Mission

GLOBE project to provide a high-quality global coverage of all land surface areas. Center for International Earth Science Information Network

(SRTM30) digital elevation data with bathymetric values to produce a seamless,

globally consistent land elevation and marine depth layer. Gaps and voids in the original SRTM (v1) data were supplemented by elevation data layers from the NOAA

2 50


Trends From Public Global Databases | Declining Reporting

Reporting Gaps Assessment

	Station Reporting	Country Reporting	Reporting Gap
Streamflow (GRDC)	By 2010, stations decline 40% since peak reporting in 1979	Declined from 142 countries in 1979 to less than 40 after 2010	Gap of 30,938 to 52,058 in current global data base
Precipitatio n (NOAA)	By 2010, stations decline 31% since peak reporting in early 1980s	Over 180 countries reporting since the mid- 1800s	Gap of 6,416 to 14,773 in current aggregated database
Water Quality Stations (GEMS)	By 2010, stations decline 41% since peak reporting in 1993	Total of 83 countries reporting since 1965, but only 16 after 2010	Not calculated as no targets by parameter.

Measurement Vs Reporting Gaps for Streamflow Stations

Global Reporting Gap: Maximum of 52,000 stations. Potential Global Measurement Gap: Maximum of 33,000 stations

Key Findings

Reporting Gaps

- Continued declines in voluntary reporting and inconsistent temporal coverage of stations.
- Precipitation databases have the largest network of reported in situ stations.
- Water quality has the fewest reported number of stations.
- Reporting gaps are high for all regions.

Measurement Gaps

- The gaps are smaller when estimating coverage of active stations.
- Measurement gaps remain most severe in low-income countries.
- Many climate and water quality stations are reported as existing but not sharing data.

This work was done in collaboration with Marc Levy and Paola Kim-Blanco at the Center for International Earth Science Information Network, Earth Institute at Columbia University.

The Value of Public Water Data

#InternetofWater

Benefits of Public Water Data

Agriculture – improving irrigation decisions Energy production – improving planning and real-time decision-making Forestry – optimize operational decisions for harvesting Manufacturing – increase efficiency through optimized recycling/reuse Transportation – optimize shipping/logistics; increased use of water traffic Tourism – river/ski forecasts; weather forecasts Public safety – disaster preparedness

All in addition to public health, water service providers, and ecosystems

Benefits of Public Water Data

The water sector—policy community, academia, private industry—has rarely quantified the economic benefits and costs of public water data

With unknown/unspecified and presumed benefits public sector has under-invested in water data

ASPEN INSTITUTE DIALOGUE SERIES ON WATER DATA

Sharing and Integrating Water Data for Sustainability

ABOUT THE DIALOGUE SERIES

PURPOSE

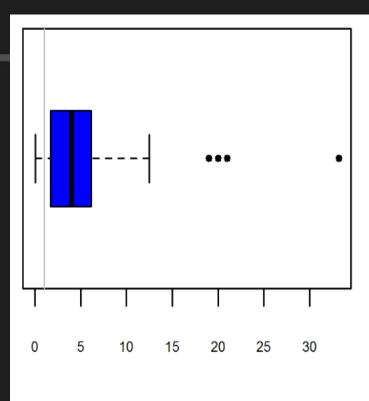
The Dialogue Series focused on how to create a better water data infrastructure to access and connect publicly collected and reported sources for data starting with quantity, quality and use information.

PARTICIPANTS

The Dialogue Series brought together a select group of 30 water experts, managers, policy makers, regulators, and representatives from the private and social sectors.

PARTNERS

The Dialogue Series was convened by the Aspen Institute in partnership with the Nicholas Institute for Environmental Policy Solutions at Duke University and Redstone Strategy Group.



Key Findings from the Dialogue Series

Water is undervalued, water data even more so. The value of open, shared, and integrated water data has not been widely quantified, documented, or communicated.

Watershed management decisions are being made without adequate data.
 Making existing public water data open is a priority. There has to be data available for there to be sharing and integration.

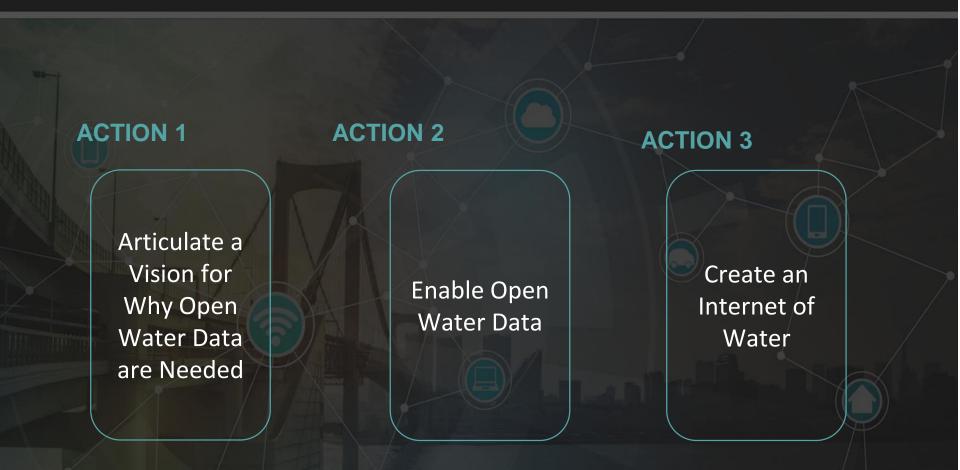
The internet shares information between entities across the world, revolutionizing society. Similarly, developing an "Internet of Water" – a network of interconnected data producers, hubs, and users – could revolutionize how water is managed.

Benefit-Cost Ratio

29 published studies of benefit-cost ratio of public water data Ranged up to 35

Median benefit-cost ratio ~4

Working Paper NI WP 17-05


June 2017

www.nicholasinstitute.duke.edu

Estimating the Value of Public Water Data

John Gardner,* Martin Doyle,*** and Lauren Patterson**

Dialogue Recommendations

Value of Water Data

We didn't know the potential value of digital road infrastructure data Until Google Maps, Waze,

If 'traditional' water data has 4:1 value, what might be value of 21st century version of water data?

nicholasinstitute.duke.edu

Thank you

I

E

.

8

. .

.

3